On the Langlands correspondence for symplectic motives
نویسنده
چکیده
In this paper, we present a refinement of the global Langlands correspondence for discrete symplectic motives of rank 2n over Q. To such a motive Langlands conjecturally associates a generic, automorphic representation π of the split orthogonal group SO2n+1 over Q, which appears with multiplicity one in the cuspidal spectrum. Using the local theory of generic representations of odd orthogonal groups, we define a new vector F in this representation, which is the tensor product of local test vectors for the Whittaker functionals [9]. I hope that the defining properties of F will make it easier to investigate the Langlands correspondence computationally, especially for the cohomology of algebraic curves.
منابع مشابه
An exotic Deligne-Langlands correspondence for symplectic groups
Let G = Sp(2n,C) be a complex symplectic group. We introduce a G× (C)-variety Nl, which we call the l-exotic nilpotent cone. Then, we realize the Hecke algebra H of type C (1) n with three parameters via equivariant algebraic K-theory in terms of the geometry of N2. This enables us to establish a Deligne-Langlands type classification of simple H-modules under a mild assumption on parameters. As...
متن کاملAn exotic Deligne-Langlands correspondence for symplectic group
Let G = Sp(2n,C) be a complex symplectic group. In the companion paper [math.AG/0601154], we introduced a (G × C × C)-variety N, which we call the exotic nilpotent cone. In this paper, we realize the Hecke algebra H of type C n with unequal parameters via equivariant algebraic K-theory in terms of the geometry of N. This enables us to establish a Deligne-Langlands type classification of “non-cr...
متن کاملShtukas for Reductive Groups and Langlands Correspondence for Functions Fields
This text gives an introduction to the Langlands correspondence for function fields and in particular to some recent works in this subject. We begin with a short historical account (all notions used below are recalled in the text). The Langlands correspondence [Lan70] is a conjecture of utmost importance, concerning global fields, i.e. number fields and function fields. Many excellent surveys a...
متن کاملt-motives: Hodge structures, transcendence and other motivic aspects
Drinfeld in 1974, in his seminal paper [10], revolutionized the contribution to arithmetic of the area of global function fields. He introduced a function field analog of elliptic curves over number fields. These analogs are now called Drinfeld modules. For him and for many subsequent developments in the theory of automorphic forms over function fields, their main use was in the exploration of ...
متن کاملAn exotic Springer correspondence for symplectic groups
Let G be a complex symplectic group. In [K1], we singled out the nilpotent cone N of some reducible G-module, which we call the (1-) exotic nilpotent cone. In this paper, we study the set of G-orbits of the variety N. It turns out that the variety N gives a variant of the Springer correspondence for Weyl groups of type C, but shares a similar flavor with that of type A case. (I.e. there appears...
متن کامل